Turbulent Flows
 Stephen B. Pope
 Cambridge University Press (2000)

Solution to Exercise 2.2

Prepared by: Allie King
Date: 3/7/03

The velocity of a particle is defined as

$$
\begin{equation*}
\mathbf{U}^{+}(t, \mathbf{Y}) \equiv \frac{d \mathbf{X}^{+}(t, \mathbf{Y})}{d t} \tag{1}
\end{equation*}
$$

and the velocity field $\mathbf{U}(\mathbf{x}, t)$ is defined by the velocities of particles at all postions $\mathbf{x}=\mathbf{X}^{+}$for all t, so that

$$
\begin{equation*}
\mathbf{U}^{+}(t, \mathbf{Y})=\mathbf{U}\left(\mathbf{X}^{+}(t, \mathbf{Y}), t\right) \tag{2}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\frac{d \mathbf{s}}{d t} & =\frac{d \mathbf{X}^{+}(t, \mathbf{Y}+d \mathbf{Y})}{d t}-\frac{d \mathbf{X}^{+}(t, \mathbf{Y})}{d t} \\
& =\mathbf{U}^{+}(t, \mathbf{Y}+d \mathbf{Y})-\mathbf{U}^{+}(t, \mathbf{Y}) \\
& =\mathbf{U}\left(\mathbf{X}^{+}(t, \mathbf{Y}+d \mathbf{Y}), t\right)-\mathbf{U}\left(\mathbf{X}^{+}(t, \mathbf{Y}), t\right) \tag{3}
\end{align*}
$$

Invoking the definition of $\mathbf{s}(t)$, we write

$$
\begin{equation*}
\mathbf{X}^{+}(t, \mathbf{Y}+d \mathbf{Y})=\mathbf{X}^{+}(t, \mathbf{Y})+\mathbf{s}(t) \tag{4}
\end{equation*}
$$

and expand the first term of Eq.(3) as a Taylor series as follows:

$$
\begin{align*}
\mathbf{U}\left(\mathbf{X}^{+}(t, \mathbf{Y}+d \mathbf{Y}), t\right) & =\mathbf{U}\left(\mathbf{X}^{+}(t, \mathbf{Y})+\mathbf{s}(t), t\right) \\
& =\mathbf{U}\left(\mathbf{X}^{+}(t, \mathbf{Y}), t\right)+\mathbf{s} \cdot(\nabla \mathbf{U})_{\mathbf{x}=\mathbf{x}^{+}(t, \mathbf{Y})} \\
& +\mathcal{O}\left(s^{2}\right) \tag{5}
\end{align*}
$$

Neglecting higher order terms, we substitute Eq.(5) into Eq.(3) and find

$$
\begin{align*}
\frac{d \mathbf{s}}{d t} & =\mathbf{U}\left(\mathbf{X}^{+}(t, \mathbf{Y}), t\right)+\mathbf{s} \cdot(\nabla \mathbf{U})_{\mathbf{x}=\mathbf{x}^{+}(t, \mathbf{Y})}-\mathbf{U}\left(\mathbf{X}^{+}(t, \mathbf{Y}), t\right) \\
& =\mathbf{s} \cdot(\nabla \mathbf{U})_{\mathbf{x}=\mathbf{x}^{+}(t, \mathbf{Y})} \tag{6}
\end{align*}
$$

> This work is licensed under the Creative Commons AttributionNonCommercial-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305 , USA.

